SQL Reference

Nexus Database Systems Pty Ltd NexusDB Manual

.1 Introduction

This chapter describes the Structured Query Language (SQL) statements and functions supported by
NexusDB using the TnxQuery component. This chapter does not teach you how to use SQL. If you
are not familiar with SQL, please read one of the many other available books for this purpose.

Version 1.03 SQL Reference Page 226 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

.2 Syntax Conventions

The SQL language is completely case insensitive, except within quoted string literals. However, for
our purposes, the following conventions have been used in this manual.

Convention Use

UPPERCASE | Denotes keywords used by NexusDB SQL engine. These words may
not be used as table or column names etc.

italic Denotes user-defined parameters such as table names etc.

<italic> Signifies elements that may be broken into smaller components. eg.
an aggregate function

[1] The syntax in the brackets is optional.

Denotes the previous clause may be repeated several times.

I Indicates only one of the listed options may be used.

{} Denotes one of the listed clauses must be used

Table 17: SQL - Syntax Conventions

Version 1.03 SQL Reference Page 227 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

.3 Naming Conventions

Table names must meet the following requirements:

e May contain characters allowed in any Windows filename.
e Must not contain path or file names.
e May not start with a digit.

Table names beginning with a # character signify a temporary table and are stored local to the
current statement block.

Alias names may also be used within SQL statements. eg.
SELECT S.Name
FROM Students AS S

Column or field names may be of any length and include spaces and international characters.
Punctuation characters are not permitted. To reference a column name containing a space or
keyword, use double quotes. eg.

SELECT “Student Name”
FROM Students

Version 1.03 SQL Reference Page 228 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

.4 Data Types

The following is a list of SQL data types supported by the NexusDB SQL engine and their
corresponding NexusDB data types. To convert between types, see the CAST function.

SQL Language NexusDB Data Type SQL Language NexusDB Data Type

BOOL nxtBoolean CHAR(int) nxtShortString for int < 256 and
int > 1

BOOLEAN nxtBoolean CHAR (int) nxtNullString for int >= 256

TINYINT nxtByte CHARACTER nxtChar

BYTE nxtByte CHARACTER (int) nxtShortString for int < 256 and
int > 1

BYTEARRAY nxtByteArray CHARACTER (int) nxtNullString for int >= 256

WORD nxtWordlé VARCHAR nxtChar

DWORD nxtWord32 VARCHAR (int) nxtShortString for int < 256 and
int > 1

INT nxtInt32 VARCHAR (int) nxtNullString for int >= 256

INTEGER nxtInt32 SHORTSTRING nxtShortString

SHORTINT nxtInt8 STRING nxtShortString

SMALLINT nxtIntl6 ASTRING nxtShortString

LARGEINT nxtInt64 NULLSTRING nxtNullString

AUTOINC nxtAutolInc ACHAR nxtNullString

FLOAT nxtSingle BLOB nxtBlob

REAL nxtDouble TEXT nxtBLOBMemo

EXTENDED nxtExtended IMAGE nxtBLOBGraphic

MONEY nxtCurrency NCHAR nxtWideChar

DATE nxtDate NCHAR (int) nxtWideString for int > 1

TIME nxtTime NVARCHAR nxtWideChar

DATETIME nxtDateTime NVARCHAR (int) nxtWideString for int > 1

CHAR nxtChar RECREV nxtRecRev

Table 18: SQL Data Types
Version 1.03 SQL Reference Page 229 of 255

Nexus Database Systems Pty Ltd

NexusDB Manual

The following is a list of reserved words recognized by the NexusDB SQL engine.

#B

#

#L

#S

#T

ABS

ACHAR

ADD

ALL

ALTER

AND

ANY

AS

ASC

ASSERT
ASTRING
AUTOINC

AVG

BETWEEN
BLOB

BLOCK
BLOCKSIZE
BOOL
BOOLEAN
BOTH

BY

BYTE
BYTEARRAY
CASCADE
CASE

CAST

CEILING

CHAR
CHARACTER
CHARACTER_LENGTH
CHAR_LENGTH
CHR
COALESCE
COLUMN
COUNT
CREATE
CROSS
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
DATE
DATETIME

DAY

DEFAULT
DELETE

DESC
DESCRIPTION
DISTINCT
DROP

DWORD

ELSE

EMPTY
ENCRYPTION
END
ESCAPE
EXISTS
EXP
EXTENDED
EXTRACT
FALSE
FLOAT
FLOOR
FOR

FROM
FULL
GROUP
GROW
GROWSIZE
HAVING
HOUR
IDENTITY
IGNORE
IMAGE

IN

INDEX
INITIAL
INITIALSIZE
INNER
INSERT
INT
INTEGER
INTERVAL
INTO

IS

JOIN

KANA

KEY
LARGEINT
LEADING
LEFT

LIKE
LOCALE
LOG
LOWER
MATCH
MAX

MIN
MINUTE
MONEY
MONTH
NATURAL
NCHAR
NONSPACE
NOT

NULL
NULLIF
NULLSTRING
NVARCHAR

ON

OR
ORDER
OUTER
PARTIAL
PERCENT
POSITION
POWER
PRIMARY
RAND
REAL
RECREV
RIGHT
ROUND
SECOND
SELECT
SESSION_USER
SET
SHORTINT
SHORTSTRING
SIZE
SMALLINT
SOME
SORT
STRING
SUBSTRING
SUM
SYMBOLS
TABLE
TEXT
THEN
TIME
TIMESTAMP
TINYINT
TO

TOP
TRAILING
TRIM
TRUE
TYPE
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USE

USER
USING
VALUES
VARCHAR
WHEN
WHERE
WIDTH
WORD
YEAR

Version 1.03

SQL Reference

Page 230 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

Table 19: SQL Keywords

Version 1.03 SQL Reference Page 231 of 255

Nexus Database Systems Pty Ltd

NexusDB Manual

1.6 SQL Syntax

SESSION_USER

DDL & DML Statements SUBSTRING
Scalar Functions SYSTEM_ROW#
TRIM
ALTER
UPPER
CREATE USER
DELETE ABS
DROP CASE
INSERT CAST
SELECT CEILING Clauses
UPDATE CHARACTER_LENGTH
CHAR_LENGTH
CHR EXISTS
) COALESCE UNIQUE
Joins CURRENT_DATE MATCH
CURRENT_TIME BETWEEN
CURRENT_TIMEST LIKE
CROSS -
NATURAL CURRENT_USER IN
UNION EXP
EXTRACT
FLOOR .
IDENTITY Switches
Aggregates LOG
LOWER #B+/-
NULLIF #1+/-
é(\)’ ¢ - POSITION L4-
A POWER S 4/
MAX RAND
MIN
RO
SUM UND

Table 20: SQL Statements

1.6.1 DDL and DML Statements

1.6.1.1 ALTER

ALTER TABLE table name

{ ADD [COLUMN] <table elem>
| DROP [COLUMN] column_name

| ALTER [COLUMN] column_name { SET DEFAULT {literal | NULL | EMPTY | CURRENT_TIME
| CURRENT_DATE | CURRENT_TIMESTAMP }

| DROP DEFAULT } }

<table_elem> = column_name <data type>
[DEFAULT { <literal> | NULL | EMPTY | CURRENT_TIME | CURRENT_DATE

[NOT NULL]

| CURRENT_TIMESTAMP }]

[PRIMARY KEY | UNIQUE]

This statement can be used to alter columns within a table, whether it is to add a new column,
change an existing one or remove a column.

The following example adds a new column to the Customers table:
ALTER TABLE Customers
ADD COLUMN NewCol char(5)

The following example removes the existing column, Postcode, from the Customers table:

Version 1.03 SQL Reference Page 232 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

ALTER TABLE Customers
DROP COLUMN Postcode

The following example defines a new default value for the City column on the Customers table:
ALTER TABLE Customers
ALTER COLUMN City
SET DEFAULT 'Brisbane'

The following example removes a previously defined default value from the Postcode column of the
Customers table:

ALTER TABLE Customers

ALTER COLUMN Postcode

DROP DEFAULT

1.6.1.2 CREATE

CREATE TABLE table_name [{ BLOCKSIZE | BLOCK } integer]
[{ INITIALSIZE | INITIAL } integer]
[{ GROWSIZE | GROW } integer]
[ENCRYPTION ‘RegisteredEncryptionEngine’]
(<table_elem> | <table_constraints>

[, <table elem> | <table_constraints> ..])

CREATE [UNIQUE] INDEX index_name ON table_name (<index> [, <index> ..])

<table elem> = column_name <data_ type>
[DEFAULT { <literal> | NULL | EMPTY | CURRENT_DATE | CURRENT_TIME
| CURRENT_TIMESTAMP }]
[NOT NULL]
[PRIMARY KEY | UNIQUE]

<table constraints> = PRIMARY KEY | UNIQUE (column_name [, column_name ..]

<index> = column_name [ASC | DESC] [LOCALE integer]
[IGNORE { CASE | KANA TYPE | NON_SPACE | SYMBOLS | WIDTH }]
[USE STRING SORT]

These statements create new tables and Indices on tables respectively.
BLOCKSIZE defaults to 4kb if not specified but can take values 4, 8, 16, 32 or 64.

The following example creates a table and corresponding index:
CREATE TABLE Students BLOCKSIZE 8

(Student# SMALLINT NOT NULL PRIMARY KEY,
StudentName CHAR(25),

Address CHAR(30),

State CHAR(3),

PostCode CHAR(4),

Gender CHAR)

CREATE INDEX StudentNameIndex
ON Students (StudentName ASC, State IGNORE CASE)

1.6.1.3 DELETE

DELETE FROM [database_name .] table _name [[AS] <sglName>]
[WHERE <condition>]

This statement deletes all rows from the table that meet the condition.

Version 1.03 Glossary and Terminology Page 233 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

The following example removes all orders more than 2 years old:
DELETE FROM Orders
WHERE OrderDate < CURRENT_DATE - INTERVAL ‘2’ YEAR

1.6.1.4 DROP

DROP TABLE table_name
DROP INDEX table_name . index_name

This statement can be used to delete entire tables or Indices.

The following example deletes the Orders table from the database:
DROP TABLE Orders

The following example deletes an index from the Orders table:
DROP INDEX Orders.TakenByIndex

1.6.1.5 INSERT

INSERT INTO table_name { DEFAULT VALUES
| (column_name [, column_name ..]) <table_expr>

| <table expr>
This statement inserts records into a table using either default or specified values.

The following examples both insert records into the Students table.
INSERT INTO Students
(Student#, StudentName ,Address, State, PostCode, Gender)
VALUES (1234567, ‘Joanne Smith’, ‘', ‘QLD’, 4567, ‘F’)
INSERT INTO Students
VALUES (1234678, ‘James Thomas’, ‘’, ‘NSW', 2345, ‘M’),
(1345678, 'Ann Friar', ’25 Wilson Street’, ‘QLD’, 4054, ‘F’)

1.6.1.6 SELECT

SELECT [ALL | DISTINCT] [TIOP n [PERCENT]] <selection> [, <selection> ..]
FROM <table_ref> [, <table ref> ..]
[WHERE <condition> [{AND | OR} <condition> ..] 1]
[GROUP BY <column> [, <column> ..] 1]
[HAVING <condition> [{AND | OR} <condition> ..] 1]
[ORDER BY <order_item> [, <order_item> ..]]

The SELECT statement retrieves data from one or more tables within a single database. This
statement returns a result set, which can be read-only or live.

The following list briefly describes the above commands:

SELECT - Specifies the columns or data that is to be retrieved. Simply stating * retrieves all
columns. TOP n will only return the first n rows and TOP n PERCENT, respectively, the first n%
rows that meet selection criteria.

FROM - Specifies the tables from which the data is to be collected. You may assign an alias to each
table and use the alias in the other clauses of the SELECT statement.

WHERE - Specifies the criteria for record selection. Note that in the WHERE clause a AND b OR c is
equivalent to (a AND b) OR ¢, such that AND takes precedence.

GROUP BY - Indicates how rows are to be grouped. Rows are grouped together based upon the
values in one or more columns.

HAVING - Allows you to restrict the rows that are grouped based upon the values in the group. This
is similar to a WHERE clause but applies to the fields in the GROUP BY clause.

Version 1.03 Glossary and Terminology Page 234 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

ORDER BY - Indicates how the result set is to be ordered. You may order the result set using one or
more columns in either ascending or descending order.

The following example lists all orders taken today which contain at least 5 of the selected item.
SELECT OrderNumber, Count (*) AS Num_TItems
FROM OrderDetails
WHERE ItemNumber = :selectedItemNumber
GROUP BY OrderNumber
HAVING Num_Items >= 5
ORDER BY OrderNumber

The following is the syntax definitions for the above fields. Note that all fields containing _name are
user defined names and must satisfy the previously mentioned naming conventions.

<selection> = * | <simple expression> [AS column_name]
SELECT *, (Price * 1.1) AS “Price incl. tax”

FROM Items

<simple expression> = <term> [{+ | — | M| |” | * | / } <term> ..] where * and / take
precedence

<term> = [-] { (<condition>)

(<select_statement>)
<field>

<literal>

: parameter
<aggregate_function>

<scalar. function> }

<table ref> = <table expression> [[AS] sqglName] [(<insert_column_list>)]
| [database_name .] table_name [[AS] sglName]

SELECT tl.*, t2.Name

FROM dbname.tablel AS tl, table2 t2

WHERE tl.id t2.id

<condition> = [NOT] { <exists_clause>
| <unique_clause>
<relational_clause>
<match_clause>
<between_clause>

|

|

|

| <like_clause>
| <in_clause>

|

<test_clause> }

<literal> = { TRUE | FALSE
| float
| integer
| string
| BlobString
| DATE string
| TIME string
| TIMESTAMP string
| INTERVAL string { YEAR | MONTH | DAY | HOUR | MINUTE | SECOND }
[TO { YEAR | MONTH | DAY | HOUR | MINUTE | SECOND }] 1}

Version 1.03 Glossary and Terminology Page 235 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

<table expression> = <non_join table expression> [UNION <non_ join table expression>]

| <join expression>

<non_join table_expression> = <select_statement>

| (<table expression>) }

| TABLE <table ref>

| VALUES (<value_list> [, <value list> ..])
SELECT Name, BestScore
FROM Students, (SELECT StudentID, Max(Grade) AS BestScore

FROM Results) AS B

WHERE Students.StudentID = B.StudentID

<value list> { DEFAULT | NULL | <simple_expression> }

[, { DEFAULT | NULL | <simple_expression> } ..]

<order_ item> { <column> | integer } [ASC | DESC] [LOCALE integer 1]
[IGNORE { CASE | KANA TYPE | NON_SPACE | SYMBOLS | WIDTH } 1]

[USE STRING SORT]

<column> = [table_name .] field name [[AS] sql_name]

<field> = [table_name .] field_name

<literal> = float | integer | string

DATE string

TIME string

TIMESTAMP string

INTERVAL string {YEAR | MONTH | DAY | HOUR | MINUTE | SECOND}
[TO {YEAR | MONTH | DAY | HOUR | MINUTE | SECOND}]

| “TRUE’ | ‘FALSE’

1.6.1.7 UPDATE

UPDATE [database_name .] table_name [[AS] sgl_name]
SET <update_item> [, <update_item>.]
[WHERE <condition>]

<update item> = column_name = DEFAULT | NULL | <simple_ expression>

This statement updates items all rows from the table that meet the condition.

The following example gives all female employees a 5% raise:
UPDATE Employees
SET Salary = Salary * 1.05
WHERE Gender = ‘F’

JOIN
<join_table> CROSS JOIN <table ref>

<join table> [NATURAL] [INNER
| LEFT [OUTER]
| RIGHT
| FULL [OUTER] 1]
JOIN <join_table> [{ ON <condition>

Version 1.03 Glossary and Terminology Page 236 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

| USING (field name [, field_name ..]) } 1
<join table> = [database _name .] table_name [[AS] sqgl_name]
| (<table_expression>) [[AS] sqgl_name]

Fundamentally, a join is a cross product of the rows (records) from all participating tables. That is,
all possible combinations of all rows from the tables. In SQL, joins can be specified in two different
ways: implicitly, or explicitly with the JOIN keyword. The following two statements are equivalent.

SELECT * FROM tablel, table2 implicit join
SELECT * FROM tablel CROSS JOIN table2 explicit join

Generally, the ON clause of the JOIN looks and works just like a WHERE clause on a SELECT.
However, an ON clause must specify one or more relations between the two tables being joined

The following example lists students and the subjects they are enrolled in.
SELECT student_name, subject_code
FROM students AS S JOIN enrolments
ON S.Stud# = enrolments.Stud#
ORDER BY student_name

For joins where the names of the columns being joined on are the same, there's a more compact way
to express the same join. The result of a JOIN with a USING clause differs slightly from one with an
ON clause, with the joining columns only listed once each.
SELECT student_name, subject_code
FROM students JOIN enrolments
USING (Stud#)
ORDER BY student_name

NATURAL joins are similar to USING joins with all columns of the same name paired.
SELECT *
FROM students as S NATURAL JOIN enrolments

The three previous join types discussed (NATURAL, JOIN ON, JOIN USING) are implicitly calculated as
inner joins. This can also be explicitly specified by using the optional INNER keyword.

The difference between inner and outer joins has to do with NULL values. If no NULL values are
involved in a join, then an outer join is equivalent to its inner form. If NULL values occur in any of
the columns participating in the join expression, there will be no rows in the result table for those
source rows. Generally in SQL, comparing a value of NULL to anything else (including another
NULL) gives an undefined result.

Sometimes, however, it is necessary to get a row in the result that represents missing information in
the source tables. An outer join allows you to specify that rows from either the left, right or both
tables in the join, with no matching record in the 'opposite’ table, should appear in the result.

Version 1.03 Glossary and Terminology Page 237 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

The following example list all students and subjects they are enrolled in. Students not enrolled in
any subjects will also be selected.

SELECT student_name, subject_code

FROM students LEFT OUTER JOIN enrolments USING (Stud#)

ORDER BY student_name

Note that all three cases (LEFT, RIGHT, and FULL) all imply outer joins, the OUTER keyword is
actually obsolete and can be omitted.

1.6.3 Aggregate Functions

1.6.3.1 AVG

AVG ([ALL | DISTINCT] <simple_expression>)

Calculates the average of numeric values in a column or expression.

This aggregate function can be used to calculate the average of values for a specific column or
expression. All values in the column or expression must be numeric. Use the DISTINCT keyword to
remove duplicate values before evaluating.

NULL values are excluded from all calculations. Note that if the return set has no rows, AVG will
return NULL.

The following example calculates the average grade for each student:
SELECT StudenNum, AVG (Grade)
FROM Enrolments
GROUP BY Student

1.6.3.2 COUNT

COUNT ([ALL | DISTINCT] <simple expression>)

Returns a count of the number of non-NULL values in the rows retrieved by a SELECT statement.

COUNT (*)

Returns the number of rows including NULL values.

COUNT(*) can be optimised to return very quickly if the SELECT retrieves from one table, no other
columns are retrieved and there is no WHERE clause.

For example:
SELECT COUNT (*) FROM Students

The following example returns the number of female students:
SELECT COUNT (StudName)
FROM Students
WHERE Gender = “F”

If you specify the DISTINCT keyword, COUNT eliminates all duplicate rows. The following example
returns the number of students enrolled in subjects:

SELECT COUNT (DISTINCT StudNum)

FROM Enrolments

Version 1.03 Glossary and Terminology Page 238 of 255

Nexus Database Systems Pty Ltd NexusDB Manual
1.6.3.3 MAX, MIN

MAX ([ALL | DISTINCT] <simple_expression>)

Retrieves the largest value in a column or expression.

MIN ([ALL | DISTINCT] <simple_expression>)

Retrieves the smallest value in a column or expression.

These functions can be used to find the largest and smallest values respectively in an expression.
The expression can be made up of a constant, column or non-aggregate function.

These functions exclude rows having NULL values. If a query does not return any rows, the function
returns NULL. The following example selects the highest and lowest salaries of employees:

SELECT MAX(Salary), MIN(Salary)

FROM Employees

1.6.3.4 SUM

SUM([ALL | DISTINCT] <simple_ expression>)

Returns the sum of the numeric expression.

This aggregate function can be used to calculate the sum of values for a specific column or
expression. All values in the column or expression must be numeric.

NULL values are excluded from all calculations. Note that if the return set has no rows, SUM will
return NULL.

The following example calculates the total cost of each order made:
SELECT OrderNum, SUM(ItemPrice)
FROM Orders
GROUP BY OrderNum

1.6.4 Scalar Functions

1.6.4.1 ABS

ABS (<simple_expression>)

Calculates the absolute value of the numeric expression.

This mathematical function can be used to calculate the absolute value for a specific column or
expression. All values in the column or expression must be numeric

For example:

SELECT ABS(5) would return 5, and
SELECT ABS(-3) would return 3.
1.6.4.2 CASE

CASE WHEN <case _expression_1> THEN <when exp_ 1>
[WHEN <case_expression_n> THEN <when_exp_n>..]
[ELSE <else_ exp>]

END

Version 1.03 Glossary and Terminology Page 239 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

The CASE function is similar to a nested IF function. The result is returned for the first condition,
which is true. If there was no case_expression that returns true, then the expression after ELSE is
returned. If there is no ELSE part then NULL is returned.

The following example displays the student name and gender as a string:
SELECT StudentName,
CASE WHEN Gender = “F” THEN “Female”
WHEN Gender ‘= “M” THEN “Male”
ELSE “Unspecified” END
FROM Students

I64SicAsT

CAST (<simple_expression> AS data_type)

The CAST function converts a value in one internal storage format to another. The following
example selects all records from the table Customers where the postcode column starts with '40'.
SELECT *
FROM Customers
WHERE CAST (PCode AS char(2)) = 40'

1.6.4.4 CEILING

CEILING (<simple expression>)

Calculates the smallest integer value not less than the expression. This function can be used to
round a number up to the nearest integer.

For example:

SELECT CEILING(5) would return 3,
SELECT CEILING(5.2) would return 6, and
SELECT CEILING(-3.5) would return -3.

1.6.4.5 CHARACTER_LENGTH, CHAR_LENGTH

CHARACTER_LENGTH (<simple_expression>)
CHAR_LENGTH (<simple expression>)

Returns the number of characters in a column or simple expression.
This statement will only be executed if expression is a string.

The following example finds all students who have a longer last name than first name:
SELECT FirstName, LastName
FROM Students
WHERE CHAR_LENGTH (LastName) > CHARACTER_LENGTH (FirstName)

1.6.4.6 CHR

CHR (<integer_expression>)

Returns a character corresponding to the value of the argument expression. The result is compatible
with all NexusDB character types.

The following example returns all customer rows with a CR/LF pair in the Memo column.
SELECT *

Version 1.03 Glossary and Terminology Page 240 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

FROM Customers
WHERE Memo LIKE '$%' || CHR(13) || CHR(10) || '%"

1.6.4.7 COALESCE

COALESCE (<simple_expression> [, <simple_ expression> ..])

Returns the first non-NULL expression in the list. NULL is returned if all expressions are NULL.
Each expression may be a column, constant, or function

The following example returns a single contact number for each student if available:
SELECT StudentName, COALESCE (HPhone, BBhone, Mobile)
FROM Students

1.6.4.8 CURRENT_DATE

CURRENT_DATE

Returns the current date of the NexusDB Server formatted based on the client settings.

The following example finds all future appointments:
SELECT *
FROM Appointments
WHERE ApptDate >= CURRENT_DATE

1.6.4.9 CURRENT_TIME

CURRENT_TIME

Returns the current time of the NexusDB Server formatted based on the client settings.

The following example finds all remaining appointments for today:
SELECT *
FROM Appointments
WHERE ApptDate = CURRENT_DATE AND ApptTime >= CURRENT_TIME

1.6.4.10 CURRENT_TIMESTAMP

CURRENT_TIMESTAMP

Returns the current date and time of the NexusDB server formatted based on the client settings.

The following example selects all new appointments made today:
SELECT *
FROM Appointments
WHERE BookingDate BETWEEN CURRENT_DATE AND CURRENT_TIMESTAMP

1.6.4.11 CURRENT_USER

CURRENT_USER

See User

Version 1.03 Glossary and Terminology Page 241 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

1.6.4.12 EXP

EXP (<simple_expression>)

Returns the value of e (the base of natural logarithms) raised to the power of the numeric expression.

For example:
SELECT EXP (2) would return 7.389056, and
SELECT EXP (-3) would return 0.049787.

1.6.4.13 EXTRACT

EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND}
FROM <simple_expression>))

Returns the specified portion of any field or expression of type Date, Time or TimeStamp.

The following example groups students by their year of birth:
SELECT StudentName, EXTRACT(YEAR FROM Dob) AS YearOfBirth
FROM Students
GROUP BY YearOfBirth

1.6.4.14 FLOOR

FLOOR (<simple_expression>)

Calculates the largest integer value not greater than the expression. This function can be used to
round a number down to the nearest integer.

For example:

SELECT FLOOR (5) would return 5,
SELECT FLOOR (5.2) would return 5, and.
SELECT FLOOR (-3.5) would return 4.

1.6.4.15 IDENTITY

IDENTITY

Returns the most recent autoinc value generated by the current SQL session. Assuming there's a
column of type autoinc (not explicitly shown), the following example inserts two records in a table
and links the second to the previous one via the Previous column:

INSERT INTO FamilyMembers (Name)

VALUES ('George Smith'")

INSERT INTO Customers (Name, Father)

VALUES ('Bill Smith', IDENTITY)

1.6.4.16 LOG

LOG (<simple_expression>)

Returns the natural logarithm of the numeric expression.

For example:
SELECT LOG(2) would return 0.693147

Version 1.03 Glossary and Terminology Page 242 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

1.6.4.17 LOWER

LOWER (<simple_expression >)

Returns the expression string with all characters changed to lower case.

For example:

SELECT LOWER (“Hello”) would return “hello”, and
SELECT LOWER(“QLD, 4000") would return “gld, 4000”.
1.6.4.18 NULLIF

NULLIF (<simple_expression >, <simple_expression>)

Returns NULL if expression 1 and 2 are equal.
This is equivalent to:

IF exprl = expr2 THEN NULL ELSE exprl
The following example returns null for grades equal to 1:

SELECT Student#, NULLIF (grade,l)
FROM Students

1.6.4.19 POSITION

POSITION (<simple expression > IN <simple expression>)

Returns the position of the first occurrence of the first string expression in the second string
expression. This function is case-sensitive. If the substring is not found within the string, O is
returned.

The following example lists all subjects starting with “MAB”:
SELECT *
FROM Subjects
WHERE POSITION(‘MAB’ IN SubjectCode) = 1

1.6.4.20 POWER

POWER (<simple_expression >, <simple_expression>)

Returns the value of the first numeric expression raised to the power of the second numeric
expression.

For example:
SELECT POWER(2, 3) would return 8, and
SELECT POWER(3.5, 2.2) wouldreturn 15.738.

1.6.4.21 RAND

RAND

Returns a random floating point number between 0 and 1.0.

For example:
SELECT RAND could return 0.7482, and on repeat

Version 1.03 Glossary and Terminology Page 243 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

SELECT RAND could return 0.6445.

1.6.4.22 ROUND

ROUND (<simple_expression>)

Returns the expression rounded to the closest integer.

For example:
SELECT ROUND(7.6) would return 8,
SELECT ROUND(2.3) would return 2, and
SELECT ROUND (-1.3) would return -1.

1.6.4.23 SESSION_USER

SESSION_USER

See User

1.6.4.24 SUBSTRING

SUBSTRING (<simple expression> FROM <position> [FOR <length>])

Returns a substring from a string expression.

For example:
SELECT SUBSTRING (“Hello World” FROM 3 FOR 5)
would return “1llo W”

The following example can be used to get last name of a customer.
SELECT SUBSTRING (Name FROM POSITION(' ‘' IN Name))
FROM Customer

1.6.4.25 SYSTEM_ROWi#

SYSTEM_ROW#

When specified as a column in a query, the result of this function is the sequential (zero-based) row
number in the result set. This may be used to generate a unique row-id for client-side controls that
require it. The data type of SYSTEM_ROW# is nxtWord32.
Note that, currently, SYSTEM_ROWi# has no effect in grouped queries.

SELECT SYSTEM ROW#, customer_name
FROM Customers

1.6.4.26 TRIM

TRIM([LEADING | TRAILING | BOTH] [<simple expression> FROM]

<simple_expression>)

TRIM removes leading and/or trailing characters from a string.

This function is used to remove characters from the beginning and/or end of a string. If two
expressions are specified, those characters of the first are trimmed from the second. Otherwise, the
space character is removed. By default, the BOTH keyword is implemented if nothing is specified.

Version 1.03 Glossary and Terminology Page 244 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

SELECT StudentName,

TRIM(LEADING 'D' FROM StudentName),
TRIM(TRAILING 'e' FROM StudentName),
TRIM(BOTH 'A' FROM StudentName),
TRIM('e' FROM StudentName),
TRIM(BOTH FROM StudentName),
TRIM(StudentName)

FROM Students

1.6.4.27 UPPER

UPPER (<simple_expression>)

Returns the expression string with all characters changed to upper case.

For example:
SELECT UPPER (“Hello”) would return “HELLO”

The following example lists all states from which students live.
SELECT DISTINCT UPPER(State)
FROM Students

1.6.4.28 USER

USER
SESSION_USER
CURRENT_USER

Returns the current user name from the session object.

The following example finds all appointments made by the current user:
SELECT *
FROM Orders
WHERE TakenBy = CURRENT_USER

1.6.5 Clauses
.6.5.1 EXISTS

EXISTS (<select_statement>)

The following example finds all students enrolled in more than 2 subjects.
SELECT student_name
FROM students S
WHERE EXISTS (SELECT COUNT (*)
FROM enrolls
WHERE student# = S.student#
HAVING COUNT (*) > 2)

1.6.5.2 UNIQUE

UNIQUE (<table_exp>)

The following example selects enrolled in more than 1 subject
SELECT student_name
FROM students AS S
WHERE NOT UNIQUE (SELECT student#

Version 1.03 Glossary and Terminology Page 245 of 255

Nexus Database Systems Pty Ltd

NexusDB Manual

FROM enrolls
WHERE student# = s.student#)

1.6.5.3 MATCH

MATCH [UNIQUE] [PARTIAL | FULL] (<select_statement>)

SELECT *
FROM students
WHERE student# MATCH UNIQUE FULL (SELECT student#
FROM enrolls)

1.6.5.4 BETWEEN

BETWEEN <simple expression> [ESCAPE <simple expression>] [IGNORE CASE]

The following example selects all employees that earn between $30,000 and $35,000.

SELECT teacher_name, salary
FROM teachers
WHERE salary BETWEEN 30000 AND 35000

1.6.5.5 LIKE

LIKE <simple expression> [ESCAPE <simple expression>] [IGNORE CASE]

The following example selects all students whose first name starts with “Jo”

SELECT student_name, dender
FROM students
WHERE student_name LIKE 'Jo%'

1.6.5.6 IN

IN (<simple expression> | <select_statement>)

This example selects students from NSW and QLD

SELECT student_name, course_name, state
FROM students, enrolls, courses

WHERE state in ('QLD', ‘NSW’) AND
students.student# = enrolls.student# AND
enrolls.course# = courses.course#

ORDER BY course_name, state

The next example finds students with the lowest GPA

SELECT student_name, gpa
FROM gpas
WHERE gpa IN (SELECT MIN (gpa) FROM gpas);

1.6.5.7 <relational_clause>
<simple expression> {= | >= | > | < | <= | <> }

[ALL | ANY | SOME] { <select statement> | <simple expression> }

Version 1.03 Glossary and Terminology

Page 246 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

The following example finds students that have received a 3 in any subject.
SELECT student_name
FROM students
WHERE student# = ANY (SELECT student#
FROM enrolls WHERE grade = 3);

1.6.5.8 <test_clause>

<simple expression> IS [NOT] {NULL |TRUE | FALSE | UNKNOWN}

The following example finds all students with information in both PCode and city fields.
SELECT Student_name
FROM students
WHERE COALESCE (PCode, city) IS NOT NULL

1.6.6.1 #B+/-

#B+ <select_statement>

#B- <select_statement>

This switch controls the behavior when copying columns that contain BLOBs. In the default #B-
state, the query engine only copies a link to the original BLOB in the result set which can save on
both memory and execution time. The exception to this is if the source table is a temporary table, in
which case the query engine will copy the full BLOB from the temporary table to the result set. If
switched on (#B+) the query engine will always copy the full BLOB to the result set. Since
NexusDB allows for query results drawn on tables that are dropped within the same statement block,
it is possible to write a SQL block so that BLOB links would refer to a table which had since been
dropped, so understanding the implications of this setting is important.

SELECT * FROM BlobTable;

DROP BlobTable;

In this case, the SELECT must be prefixed with #B+ to force BLOBs to be copied from BlobTable
into the query result.

1.6.6.2 #1+/-

#I+ <select_statement>

#I- <select_statement>

Indexing optimisation turns the use of Indices on and off for the following statement. This switch
defaults to #I+ (on), and is usually only turned off when trying to troubleshoot the query optimizer.

1.6.6.3 #L+/-

#L+ <select_statement>

#L— <select_statement>

#L+ turns on logging for the statement block as a whole and should be placed before any other non-
comment line. When logging is enabled, (default is off) the query engine collects information about
simplifications, index use, and query metrics, and builds a text report which is returned to the client
with the query result and status. The report can be accessed through the Log property of the nxQuery
component and can be used to analyze the query for opportunities to rephrase statements for better
performance.

Version 1.03 Glossary and Terminology Page 247 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

1.6.6.4 #S+/-

#S+ <select_statement>

#S— <select_statement>

#S- turns query simplification off for the statement that follows the switch (default is on). Query
simplification is a process where the structure of a parsed query is simplified. Eg. x BETWEEN y
AND z would be simplified to x>=yAND x <=z .

As simplification occurs before the SQL statement is bound to the tables it works on, occasionally,
simplification can convert a query into a less efficient alternative. For such cases, the #S- switch
allows you turn simplification off. When logging is enabled (see #L+), the individual stages in the
simplification process are logged.

Version 1.03 Glossary and Terminology Page 248 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

.7 General Information

.7.1 Temporary Tables

NexusDB/SQL supports the notion of temporary tables, but the syntax for creating and accessing
them is different from what is stipulated in the SQL-92 standard. In NexusDB/SQL, a table whose
name starts with the pound symbol (#) is by definition a temporary table - visible only to the current
SQL session. Most operations performed on temporary tables are significantly faster than the same
operations on permanent tables.

1.7.2 Multi-statement blocks

NexusDB/SQL supports multi-statement blocks. Any number of SQL statements may be executed in
a single ExecSQL or Open command. As you would expect, statements are executed in a sequential
fashion. If an exception occurs in a statement, the following statements are not executed. For multi-
statement blocks that generate more than one query result, only the last one is returned to the client.
NexusDB/SQL fully supports query results drawn on tables that are dropped within the same
statement block.

1.7.3 Blob literals

NexusDB/SQL uses a special syntax to allow the content of BLOB columns to be expressed as
literals. A BLOB literal is a string of hexadecimal digits enclosed in square brackets. As each BLOB
byte is encoded as two hex digits, the total number of hex digits in a BLOB literal must always be
even.

Example:
INSERT INTO SomeTable (Key, BlobFieldl, BlobField2)
VALUES (1, [ABCDEF123456], [010101FF]);

I.7.4 Querying the data dictiona

NexusDB represents the most important data structures of its internal data dictionary as a set of
virtual tables to the SQL engine. This makes it possible to run queries against the structure of the
database using normal SQL syntax. The data dictionary is defined through the five tables,
#TABLES, #FIELDS, #INDICES, #INDEXFIELDS, and #FILES. The following table defines the
contents of each table:

Table Content

#TABLES Contains a row for each table in the dictionary. Does not include tables
belonging to the virtual dictionary itself.

#FIELDS Contains a row for every defined column in every table.

#INDICES Contains a row for each defined index - both sequential and user-defined.

#INDEXFIELDS Contains a row for each key segment in composite indices.

#FILES Contains a row for each physical Nexus database file in the current database.

For example:

Version 1.03 Glossary and Terminology Page 249 of 255

Nexus Database Systems Pty Ltd NexusDB Manual

To get a list of all tables in the current database, you can do
SELECT TABLE_NAME FROM #TABLES;

To get a list of columns for a particular table, say 'Customers’, you can do
SELECT FIELD_NAME FROM #FIELDS WHERE TABLE_NAME = 'Customers';

Version 1.03 Glossary and Terminology Page 250 of 255

